Hertz potentials approach to the dynamical Casimir effect

Diego A. R. Dalvit Theoretical Division

In collaboration with Martin Crocce (New York), Fernando Lombardo and Diego Mazzitelli (Buenos Aires)

Static Casimir effect

Casimir (1948): Two uncharged, perfectly conducting plates attract each other due to the modification of the quantum vacuum fluctuations imposed by the boundaries

$$\frac{F}{A} = \frac{\pi^2}{240} \frac{\hbar c}{d^4} = 0.016 \frac{\text{dyn}}{\text{cm}^2} \left(\frac{\mu \text{m}}{d}\right)^4$$

Recent experiments

- □ Plate-sphere
 - ✓ Torsion balances
 - √ Atomic force microscopes
 - √ Micromechanical resonators

- □ Parallel plates
 - ✓ Cantilevers

Dynamical Casimir effect

Dissipative counterpart of the conservative (static) Casimir forces

Connections and applications...

- ✓ Non contact friction → Vacuum-induced mechanical dissipation
- ✓ Motion-induced photons → Vacuum-induced heat dissipation in the form of photons

DCE in 3D waveguides (EM field)

Polarizations of the EM field:

Transverse Electric (TE)

Transverse Magnetic (TM)

Vector and scalar Hertz potentials

Representation of the physical degrees of freedom of EM field alternative to the standard \mathbf{A} and $\mathbf{\Phi}$

Maxwell eqns can be written in terms of two vector potentials Π_e , Π_m

(Lorentz gauge)
$$\begin{array}{l} (\mu\epsilon \ \partial_t^2 - \nabla^2)\Pi_e = \mathbf{Q}_e \\ (\mu\epsilon \ \partial_t^2 - \nabla^2)\Pi_m = \mathbf{Q}_m \end{array} \quad \text{[Nisbet, 1955]}$$

$$\Phi = -rac{1}{\epsilon}
abla \cdot \Pi_e$$
 $ho = -
abla \cdot \mathbf{Q}_e$ Stream $\mathbf{A} = \mu rac{\partial \Pi_e}{\partial t} +
abla imes \Pi_m$ $\mathbf{J} = rac{\partial \mathbf{Q}_e}{\partial t} + rac{1}{\mu}
abla imes \mathbf{Q}_m$ potentials

In vacuum, at points away from the sources, the electric and magnetic vector Hertz potentials can be expressed in terms of only two scalar functions, the so-called **scalar Hertz potentials** and

$$\Pi_e = \phi \ \hat{\mathbf{e}}_3 \qquad \Pi_m = \psi \ \hat{\mathbf{e}}_3 \qquad (\partial_t^2 - \nabla^2)\phi = (\partial_t^2 - \nabla^2)\psi = 0$$

Hertz potentials (cont'd)

In previous works [eg Hacyan et al (1990); Maia Neto (1994)], the EM degrees of freedom were described using two vector potentials

 \mathbf{A}_{TE} & \mathbf{A}_{TM}

$$\mathbf{E}_{\mathrm{TE}} = -\dot{\mathbf{A}}_{\mathrm{TE}} \; ; \; \mathbf{B}_{\mathrm{TE}} = \nabla \times \mathbf{A}_{\mathrm{TE}}$$

$$\mathbf{B}_{\mathrm{TM}} = \dot{\mathbf{A}}_{\mathrm{TM}} \; ; \; \mathbf{E}_{\mathrm{TM}} = \nabla \times \mathbf{A}_{\mathrm{TM}}$$

The two approaches are, in fact, equivalent

$$\mathbf{A}_{\mathrm{TE}} = \nabla \times \Pi_m = \hat{\mathbf{z}} \times \nabla \psi$$

$$\mathbf{A}_{\mathrm{TM}} = \nabla \times \Pi_e = \hat{\mathbf{z}} \times \nabla \phi$$

Hertz potentials (cont'd)

Boundary conditions: starting from the usual b.c. for a perfect mirror In the instantaneous co-moving Lorentz frame

$$\psi|_{z=0,L_z} = 0 \; ; \; \frac{\partial \psi}{\partial n}|_{\text{trans}} = 0$$

$$\frac{\partial \phi}{\partial z}|_{z=0,L_z} = 0 \; ; \; \phi|_{\text{trans}} = 0$$

TE modes

$$\psi(z = L_z(t), t) = 0$$

Dirichlet b.c. along z

$$\partial_n \psi|_{\rm trans} = 0$$

Neumann b.c. transv.

TM modes

$$(\partial_z + \dot{L}_z(t)\partial_0) \ \phi(z = L_z(t), t) = 0$$

generalized Neumann b.c. along z

$$\phi|_{\rm trans} = 0$$

Dirichlet b.c. transv.

Quantization - TE modes

Scalar Hertz potential ψ (Dirichlet boundary conditions along z)

$$\psi(z = L_z(t), t) = 0$$

Mode expansion for t<0:

$$\psi(\mathbf{x},t) = \sum_{\mathbf{k}} a_{\mathbf{k}}^{\mathrm{IN}} \ u_{\mathbf{k},TE}^{\mathrm{IN}}(\mathbf{x},t) + \mathrm{h.c.}$$

$$\mathbf{k} = (\mathbf{k}_{\perp}, k_z = n_z \pi / L_z)$$

$$\frac{e^{-i\omega_{\mathbf{k}}t}}{\sqrt{2\omega_{\mathbf{k}}}} \ \sqrt{\frac{2}{L_z}} \sin(k_z z) v_{\mathbf{k}_{\perp}}(\mathbf{x}_{\perp})$$

$$\omega_{\mathbf{k}} = |\mathbf{k}|$$

The function $v_{{f k}_\perp}$ satisfies Neumann b.c. on the lateral surfaces and $\nabla_\perp^2 v_{{f k}_\perp} = -{f k}_\perp^2 \ v_{{f k}_\perp}$

Instantaneous basis for t >0:

$$u_{\mathbf{k},TE}(\mathbf{x},t>0) = \sum_{\mathbf{p}} Q_{\mathbf{p},TE}^{(\mathbf{k})}(t) \sqrt{\frac{2}{L_z(t)}} \sin\left(\frac{p_z \pi}{L_z(t)}z\right) v_{\mathbf{p}_{\perp}}(\mathbf{x}_{\perp})$$

Initial conditions:
$$Q_{\mathbf{p},TE}^{(\mathbf{k})}(0) = \frac{1}{\sqrt{2\omega_{\mathbf{k}}}} \; \delta_{\mathbf{pk}} \qquad \qquad \dot{Q}_{\mathbf{p},TE}^{(\mathbf{k})}(0) = -i\sqrt{\frac{\omega_{\mathbf{k}}}{2}} \; \delta_{\mathbf{pk}}$$

Quantization - TE modes (cont.d)

Harmonic motion of the boundary:

$$L_z(t) = L_0[1 + \epsilon \sin(\Omega t)]$$

$$L_z(t < 0) = L_z(t > T) = L_0$$

$$\epsilon \ll 1$$

Set of coupled equations for the modes:

$$\ddot{Q}_{\mathbf{p},TE}^{(\mathbf{k})} + \omega_{\mathbf{p}}^{2}(t)Q_{\mathbf{p},TE}^{(\mathbf{k})} = 2\lambda(t)\sum_{\mathbf{j}}g_{\mathbf{p}\mathbf{j}}\ \dot{Q}_{\mathbf{j},TE}^{(\mathbf{k})} + \dot{\lambda}(t)\sum_{\mathbf{j}}g_{\mathbf{p}\mathbf{j}}\ Q_{\mathbf{j},TE}^{(\mathbf{k})} + O(\epsilon^{2})$$

$$\dot{L}_{z}(t)/L_{z}(t)$$
coupling constants

When the motion stops...
$$Q_{\mathbf{p},TE}^{(\mathbf{k})}(t>T) = A_{\mathbf{p},TE}^{\mathbf{k}} \frac{e^{-i\omega_{\mathbf{k}}t}}{\sqrt{2\omega_{\mathbf{k}}}} + B_{\mathbf{p},TE}^{\mathbf{k}} \frac{e^{i\omega_{\mathbf{k}}t}}{\sqrt{2\omega_{\mathbf{k}}}}$$

Motion-induced TE photons:

$$\langle N_{\mathbf{k},TE} \rangle = \mathbf{k}_{\perp}^2 \sum_{\mathbf{p}} \frac{|B_{\mathbf{p},TE}^{\mathbf{k}}|^2}{\mathbf{p}_{\perp}^2}$$

Solving the equation for modes

✓ Analytical treatment: Multiple Scale Analysis (MSA)

Parametric resonant case: $\Omega = 2\omega_{\mathbf{k}}$

A naïve perturbative solution of the mode equations in powers of $\epsilon \ll 1$ breaks down after a short amount of time, of order $(\epsilon \ \Omega)^{-1}$

- MSA: \checkmark resummation of the perturbative series $\epsilon^n t^n$ $(n=1,2,\ldots)$
 - \checkmark solution valid for longer times, $\epsilon^{-2} \ \Omega^{-1}$

New time scale: $\tau = \epsilon t$

$$Q_{\mathbf{p}}^{(\mathbf{k})}(t) = Q_{\mathbf{p}}^{(\mathbf{k})(0)}(t,\tau) + \epsilon \ Q_{\mathbf{p}}^{(\mathbf{k})(1)}(t,\tau) + O(\epsilon^2)$$

 $\text{First order:} \quad \partial_t^2 Q_{\mathbf{p}}^{(\mathbf{k})(1)} + \omega_{\mathbf{p}}^2 Q_{\mathbf{p}}^{(\mathbf{k})(1)} = -2 \partial_{t\tau}^2 Q_{\mathbf{p}}^{(\mathbf{k})(0)} + \mathcal{F}[Q_{\mathbf{p}}^{(\mathbf{k})(0)}, \sin(\Omega t), \cos(\Omega t)]$

Solving the eqns for modes (cont'd)

 $e^{\pm i\omega_{\mathbf{p}}t}$ ✓ Key idea of MSA: avoid secularities by imposing that any term in the RHS of the equations cancels out.

$$\Omega=2\omega_{f k}$$
 resonant conditions $\Omega=|\omega_{f k}\pm\omega_{f j}|$

$$\frac{dA_{\mathbf{k}}^{(\mathbf{n})}}{d\tau} = -\frac{\pi^2 k_z^2}{2\omega_{\mathbf{k}} L_z^2} B_{\mathbf{k}}^{(\mathbf{n})} \delta(2\omega_{\mathbf{k}} - \Omega) + \sum_{\mathbf{j}} (-\omega_{\mathbf{j}} + \frac{\Omega}{2}) \, \delta(-\omega_{\mathbf{k}} - \omega_{\mathbf{j}} + \Omega) \frac{\Omega}{2\omega_{\mathbf{k}}} g_{\mathbf{k}\mathbf{j}} B_{\mathbf{j}}^{(\mathbf{n})}
+ \sum_{\mathbf{j}} \left[(\omega_{\mathbf{j}} + \frac{\Omega}{2}) \, \delta(\omega_{\mathbf{k}} - \omega_{\mathbf{j}} - \Omega) + (\omega_{\mathbf{j}} - \frac{\Omega}{2}) \, \delta(\omega_{\mathbf{k}} - \omega_{\mathbf{j}} + \Omega) \right] \frac{\Omega}{2\omega_{\mathbf{k}}} g_{\mathbf{k}\mathbf{j}} B_{\mathbf{j}}^{(\mathbf{n})}$$

Similar equation for $B_{\iota}^{(\mathbf{n})}$

Initial conditions:
$$A_{\mathbf{k}}^{(\mathbf{n})}(\tau=0)=0$$
 $B_{\mathbf{k}}^{(\mathbf{n})}(\tau=0)=\frac{1}{\sqrt{2\omega_{\mathbf{k}}}}\delta_{\mathbf{n}\mathbf{k}}$

Solving the eqns for modes (cont'd)

fill For no inter-mode coupling [$\Omega
eq |\omega_{f k} \pm \omega_{f j}|$]

$$\ddot{Q}_{\mathbf{k}}(t) + \omega_{\mathbf{k}}^2(t) \ Q_{\mathbf{k}}(t) = 0$$

(Mathiew equation)

$$N_{\mathbf{k},TE}(t) = \sinh^2(\lambda_{\mathbf{k},TE} \epsilon t)$$

Exponential growth

- ☐ Similar results for finite number of coupled modes
- ☐ It is also possible to get resonant effects for small detuning

$$\Omega = 2\omega_{\mathbf{k}} + \delta \qquad \delta \simeq O(\epsilon)$$

✓ Numerical treatment: see talk by Marcus Ruser (PM Today)

Quantization - TM modes

Scalar Hertz potential ϕ (Neumann boundary conditions along z)

$$(\partial_z + \dot{L}_z(t)\partial_0) \phi(z = L_z(t), t) = 0$$

Mode expansion for t<0:

$$\phi(\mathbf{x},t) = u_{\mathbf{k}} \mathbf{x}_0(t) + \sum_{\mathbf{k} \neq 0} a_{\mathbf{k}}^{\mathrm{IN}} \ u_{\mathbf{k},TM}^{\mathrm{IN}}(\mathbf{x},t) + \mathrm{h.c.}$$
 ndependent of x)
$$\frac{e^{-i\omega_{\mathbf{k}}}}{\sqrt{2\omega_{\mathbf{k}}}} \sqrt{\frac{2}{L_z}} \cos(k_z z) r_{\mathbf{k}_{\perp}}(\mathbf{x}_{\perp})$$
 t in a wavequide

Zero mode (independent of x) It is irrelevant in a waveguide

The function $r_{\mathbf{k}_{\perp}}$ satisfies Dirichlet b.c. on the lateral surfaces and $\nabla_{\perp}^2 r_{\mathbf{k}_{\perp}} = -\mathbf{k}_{\perp}^2 r_{\mathbf{k}_{\perp}}$

Instantaneous basis for t >0:

$$u_{\mathbf{k},TM} = \sum_{\mathbf{p}} [Q_{\mathbf{p},TM}^{(\mathbf{k})}(t) + \dot{Q}_{\mathbf{p},TM}^{(\mathbf{k})}(t) g(z,t)] \sqrt{\frac{2}{L_z(t)}} \cos\left(\frac{p_z \pi}{L_z(t)}\right) r_{\mathbf{k}_{\perp}}(\mathbf{x}_{\perp})$$

$$g(z=L_z(t),t)=0 \qquad \partial_z g(z=L_z(t),t)=-\dot{L}_z \ g(z=0,t)=0 \qquad \partial_z g(z=0,t)=0$$

[talk by Mazzitelli]

Quantization - TM modes (cont'd)

Set of coupled equations for the modes:

$$\begin{split} \ddot{Q}_{\mathbf{p},TM}^{(\mathbf{k})} + \omega_{\mathbf{k}}^{2}(t)Q_{\mathbf{p},TM}^{(\mathbf{k})} &= -2\lambda(t)\sum_{\mathbf{j}}h_{\mathbf{j}\mathbf{p}}\dot{Q}_{\mathbf{p},TM}^{(\mathbf{k})} - \dot{\lambda}(t)\sum_{\mathbf{j}}h_{\mathbf{j}\mathbf{p}}Q_{\mathbf{p},TM}^{(\mathbf{k})} \\ &- 2\dot{\lambda}(t)L_{z}^{2}(t)\sum_{\mathbf{j}}s_{\mathbf{j}\mathbf{p}}\ddot{Q}_{\mathbf{p},TM}^{(\mathbf{k})} - \lambda(t)L_{z}^{2}(t)\sum_{\mathbf{j}}s_{\mathbf{j}\mathbf{p}}\partial_{t}^{3}Q_{\mathbf{p},TM}^{(\mathbf{k})} \\ &- \sum_{\mathbf{j}}\dot{Q}_{\mathbf{p},TM}^{(\mathbf{k})}\left[s_{\mathbf{j}\mathbf{p}}\ddot{\lambda}(t)L_{z}^{2}(t) - \lambda(t)\eta_{\mathbf{j}\mathbf{p}}\right] + O(\epsilon^{2}) \end{split}$$

where $s_{\mathbf{j}\mathbf{p}}$, $h_{\mathbf{j}\mathbf{p}}$ and $\eta_{\mathbf{j}\mathbf{p}}$ are coupling constants

Motion-induced TM photons:

$$\langle N_{\mathbf{k},TM} \rangle = \mathbf{k}_{\perp}^2 \sum_{\mathbf{p}} \frac{|B_{\mathbf{p},TM}^{\mathbf{k}}|^2}{\mathbf{p}_{\perp}^2} \propto \sinh^2(\lambda_{\mathbf{k},TM} \epsilon t)$$

- \checkmark Exponential growth of photons for the resonant case $\Omega=2\omega_{\mathbf{k}}$
- \checkmark Solutions independent of the particular choice of g(z,t)
- ✓ In general, the rate of growth for TM photons is larger than for TE photons

$$\lambda_{\mathbf{k},TE} = k_z^2/2\omega_{\mathbf{k}} \quad \lambda_{\mathbf{k},TM} = (2\omega_{\mathbf{k}}^2 - k_z^2)/2\omega_{\mathbf{k}} \quad \longleftarrow \lambda_{\mathbf{k},TM} > \lambda_{\mathbf{k},TE}$$

Cavities with rectangular section

$$\psi$$
 field (TE modes) : $v_{n_x,n_y}(\mathbf{x}_\perp) = \frac{2}{\sqrt{L_x L_y}} \cos\left(\frac{n_x \pi x}{L_x}\right) \cos\left(\frac{n_y \pi y}{L_y}\right)$

$$\phi \ \ \text{field (TM modes)} \ \vdots \\ r_{m_x,m_y}(\mathbf{x}_\perp) = \frac{2}{\sqrt{L_x L_y}} \sin\left(\frac{m_x \pi x}{L_x}\right) \sin\left(\frac{m_y \pi y}{L_y}\right)$$

Spectrum:
$$\omega_{n_x,n_y,n_z}=\sqrt{(n_x\pi/L_x)^2+(n_y\pi/L_y)^2+(n_z\pi/Lz)^2}$$

Example: resonant case $\Omega=2\omega_{\mathbf{k}}$

TE modes The fundamental TE mode is doubly degenerate: (1,0,1) and (0,1,1) and is not coupled to other modes

Growth in number of photons $\propto \exp(\pi \epsilon t/\sqrt{2}L)$

✓ **TM modes** The fundamental TM mode is (1,1,0) and is coupled to (1,1,4) Growth in number of photons $\propto \exp(4.4\epsilon t/L)$

$$\omega_{TE}^{\rm fund} = \omega_{TM}^{\rm fund} \qquad \lambda_{TM}^{\rm fund} > \omega_{TE}^{\rm fund}$$

Cavities with circular section

$$\psi$$
 field (TE modes) : $v_{nm}(\mathbf{x}_\perp) = \frac{1}{\sqrt{\pi}} \frac{1}{RJ_n(y_{nm})\sqrt{1-n^2/y_{nm}^2}} \ J_n\left(y_{nm}\frac{\rho}{R}\right) e^{in\varphi}$

Bessel function of nth order

 $\text{ mth positive root of } J_n'(y) = 0$

$$\phi$$
 field (TM modes) : $r_{nm}(\mathbf{x}_{\perp}) = \frac{1}{\sqrt{\pi}} \frac{1}{RJ_{n+1}(x_{nm})} \ J_n\left(x_{nm} \frac{\rho}{R}\right) e^{in\varphi}$

Spectrum:
$$\omega_{n,m,n_z} = \sqrt{\left(\frac{y_{nm}}{R}\right)^2 + \left(\frac{n_z\pi}{L_z}\right)^2}$$

mth root of $J_n(x) = 0$

Resonant case $\Omega = 2\omega_{\mathbf{k}}$

✓ **TE modes** The fundamental TE mode is (1,1,1) and for $L_z > 2.03R$ it has a lower frequency than the fundamental TM mode. It is uncoupled

Growth in number of photons $\propto \exp(\pi \epsilon t/\sqrt{1+2.912(R/L_z)^2})$

 \checkmark TM modes The fundamental TM mode is (0,1,0) and is uncoupled

Growth in number of photons $\propto \exp(4.81\epsilon t/R)$

DCE in cavities (cont'd)

Orders of magnitude

- # of generated photons $\simeq \exp[2\lambda\epsilon t]$
 - λ depends on the geometry and the particular TE or TM mode
- Amount of created photons is limited by the Q factor of the cavity

$$t_{
m max} pprox Q/\omega$$

$$N_{
m max} \simeq \exp\left[\frac{2\lambda}{\omega} \ \epsilon \ Q\right]$$

• e.g. Cubic cavity:

Mode	$2\lambda/\omega$	
TE (1,0,1)	0.5	Maximal dimensionless amplitude for mechanical oscillations $\epsilon_{\rm max} \approx 10^{-8}$ Very high Q factors needed to produce large number of photons!
TE (0,1,1)	0.5	
TM (1,1,0)	1.0	
TM (1,1,4)	0.3	

Alternative experimental routes:

- ✓ MIR experiment (talks by Ruoso and Dodonov)
- √ Atom spectroscopy (talk by Onofrio)

TEM modes

Non-simply connected cavities

E and B fields do not have z components

Additional scalar field $\varphi(z,t)$

$$\mathbf{A}(\mathbf{x}_{\perp},z,t) = \mathbf{A}_{\perp}(\mathbf{x}_{\perp}) \widehat{arphi(z,t)}$$

$$\mathbf{E} = -(\partial_t \varphi) \; \mathbf{A}_{\perp}$$

$$\mathbf{B} = (\partial_z arphi) \ \hat{\mathbf{z}} imes \mathbf{A}_{\perp}$$

Dirichlet b.c. along z

$$(\partial_t^2 - \partial_z^2)\varphi = 0$$

 \mathbf{A}_{\perp} s a solution of the electrostatic problem in transverse dimensions

$$H^{\text{TEM}} = \frac{1}{8\pi} \left(\int d^2 x_{\perp} |\mathbf{A}_{\perp}|^2 \right) \int dz [(\partial_t \varphi)^2 + (\partial_z \varphi)^2]$$

Quantization of TEM modes is equivalent to quantizing a scalar field in 1+1 with Dirichlet boundary conditions.

TEM modes (cont'd)

Equidistant spectrum:

$$\omega_n = n\pi/L_z$$

 $\omega_n = n\pi/L_z$ all modes are coupled

Eqns for modes can be solved as before, but it is easier (due to 1+1) to use

Moore equation [Moore 1970]:

$$\psi_k(x,t) = \frac{i}{\sqrt{4\pi k}} (e^{-ik\pi R(t+x)} - e^{-ik\pi R(t-x)})$$

$$R(t+L(t))-R(t-L(t))=2.$$

Energy density [Fulling-Davies 1976]:

$$\langle T_{00}(x,t)\rangle = -f(t+x) - f(t-x)$$

$$f = \frac{1}{24\pi} \left[\frac{R'''}{R'} - \frac{3}{2} \left(\frac{R''}{R'} \right)^2 + \frac{\pi^2}{2} (R')^2 \right]$$

TEM modes (cont'd)

of photons $\propto t^2$ total energy $\propto \exp(\epsilon \ t)$

Conclusions

- ✓ Dynamical Casimir effect with full EM field inside 3D cylindrical waveguides of arbitrary section
- ✓ Physical degrees of freedom of the EM field treated with scalar Hertz potentials (TE, TM, TEM modes)
- ✓ Coupled mode equations solved analytically using Multiple Scale Analysis (see M. Ruser's talk for numerical treatments)

References:

- M. Crocce, D. Dalvit, F. Lombardo, and F. Mazzitelli, J. Opt. B 7, S32 (2005)
- M. Crocce, D. Dalvit, and F. Mazzitelli, PRA 66, 033811 (2002)
- M. Crocce, D. Dalvit, and F. Mazzitelli, PRA 64, 013808 (2001)